Main MRPT website > C++ reference for MRPT 1.5.0
Classes | Namespaces | Typedefs | Functions
[mrpt-tfest]

Detailed Description

Back to list of all libraries | See all modules

Library mrpt-tfest


Transformation estimation (tfest): This module provides functions in charge of solving the optimization problem of aligning a set of 2D or 3D corresponding points, estimating the optimal transformation between the two frames of reference.

Note that this does not include the related iterative ICP algorithm (see mrpt::slam::CICP), included in the library [mrpt-slam]

See list of all functions: mrpt::tfest

Note: This lib is new in MRPT 1.3.0 and replaces the old API in mrpt::scanmatching (deprecated now).

Classes

struct  mrpt::tfest::TPotentialMatch
 For each individual-compatibility (IC) test, the indices of the candidate match between elements in both reference frames. More...
 
struct  mrpt::tfest::TSE2RobustParams
 Parameters for se2_l2_robust(). More...
 
struct  mrpt::tfest::TSE2RobustResult
 Output placeholder for se2_l2_robust() More...
 
struct  mrpt::tfest::TSE3RobustParams
 Parameters for se3_l2_robust(). More...
 
struct  mrpt::tfest::TSE3RobustResult
 Output placeholder for se3_l2_robust() More...
 

Namespaces

 mrpt::tfest
 Functions for estimating the optimal transformation between two frames of references given measurements of corresponding points.
 

Typedefs

typedef bool(* mrpt::tfest::TFunctorCheckPotentialMatch) (const TPotentialMatch &pm, void *user_data)
 

Functions

bool TFEST_IMPEXP mrpt::tfest::se2_l2 (const mrpt::utils::TMatchingPairList &in_correspondences, mrpt::math::TPose2D &out_transformation, mrpt::math::CMatrixDouble33 *out_estimateCovariance=NULL)
 Least-squares (L2 norm) solution to finding the optimal SE(2) (x,y,yaw) between two reference frames. More...
 
bool TFEST_IMPEXP mrpt::tfest::se2_l2 (const mrpt::utils::TMatchingPairList &in_correspondences, mrpt::poses::CPosePDFGaussian &out_transformation)
 
bool TFEST_IMPEXP mrpt::tfest::se2_l2_robust (const mrpt::utils::TMatchingPairList &in_correspondences, const double in_normalizationStd, const TSE2RobustParams &in_ransac_params, TSE2RobustResult &out_results)
 Robust least-squares (L2 norm) solution to finding the optimal SE(2) (x,y,yaw) between two reference frames. More...
 
bool TFEST_IMPEXP mrpt::tfest::se3_l2 (const mrpt::utils::TMatchingPairList &in_correspondences, mrpt::poses::CPose3DQuat &out_transform, double &out_scale, bool forceScaleToUnity=false)
 Least-squares (L2 norm) solution to finding the optimal SE(3) transform between two reference frames using the "quaternion" or Horn's method: More...
 
bool TFEST_IMPEXP mrpt::tfest::se3_l2 (const std::vector< mrpt::math::TPoint3D > &in_points_this, const std::vector< mrpt::math::TPoint3D > &in_points_other, mrpt::poses::CPose3DQuat &out_transform, double &out_scale, bool forceScaleToUnity=false)
 This is an overloaded member function, provided for convenience. It differs from the above function only in what argument(s) it accepts.This version accepts corresponding points as two vectors of TPoint3D (must have identical length). More...
 
bool TFEST_IMPEXP mrpt::tfest::se3_l2_robust (const mrpt::utils::TMatchingPairList &in_correspondences, const TSE3RobustParams &in_params, TSE3RobustResult &out_results)
 Least-squares (L2 norm) solution to finding the optimal SE(3) transform between two reference frames using RANSAC and the "quaternion" or Horn's method: More...
 

Typedef Documentation

typedef bool(* mrpt::tfest::TFunctorCheckPotentialMatch) (const TPotentialMatch &pm, void *user_data)

Definition at line 29 of file indiv-compat-decls.h.

Function Documentation

bool TFEST_IMPEXP mrpt::tfest::se2_l2 ( const mrpt::utils::TMatchingPairList in_correspondences,
mrpt::math::TPose2D out_transformation,
mrpt::math::CMatrixDouble33 out_estimateCovariance = NULL 
)

Least-squares (L2 norm) solution to finding the optimal SE(2) (x,y,yaw) between two reference frames.

The optimal transformation q fulfills $ p_{this} = q \oplus p_{other} $, that is, the transformation of frame other with respect to this.

tfest_frames.png
Parameters
[in]in_correspondencesThe set of correspondences.
[out]out_transformationThe pose that minimizes the mean-square-error between all the correspondences.
[out]out_estimateCovarianceIf provided (!=NULL) this will contain on return a 3x3 covariance matrix with the NORMALIZED optimal estimate uncertainty. This matrix must be multiplied by $\sigma^2_p$, the variance of matched points in $x$ and $y$ (see paper http://www.mrpt.org/Paper:Occupancy_Grid_Matching)
Returns
True if there are at least two correspondences, or false if one or none, thus we cannot establish any correspondence.
See also
robustRigidTransformation
Note
Reference for covariance calculation: J.L. Blanco, J. Gonzalez-Jimenez, J.A. Fernandez-Madrigal, "A Robust, Multi-Hypothesis Approach to Matching Occupancy Grid Maps", Robotica, 2013. http://dx.doi.org/10.1017/S0263574712000732
[New in MRPT 1.3.0] This function replaces mrpt::scanmatching::leastSquareErrorRigidTransformation()
This function is hand-optimized for SSE2 architectures (if SSE2 is enabled from CMake)
See also
se3_l2, se2_l2_robust
bool TFEST_IMPEXP mrpt::tfest::se2_l2 ( const mrpt::utils::TMatchingPairList in_correspondences,
mrpt::poses::CPosePDFGaussian out_transformation 
)

This is an overloaded member function, provided for convenience. It differs from the above function only in what argument(s) it accepts.

bool TFEST_IMPEXP mrpt::tfest::se2_l2_robust ( const mrpt::utils::TMatchingPairList in_correspondences,
const double  in_normalizationStd,
const TSE2RobustParams in_ransac_params,
TSE2RobustResult out_results 
)

Robust least-squares (L2 norm) solution to finding the optimal SE(2) (x,y,yaw) between two reference frames.

This method implements a RANSAC-based robust estimation, returning a probability distribution over all the posibilities as a Sum of Gaussians.

The optimal transformation q fulfills $ p_{this} = q \oplus p_{other} $, that is, the transformation of frame other with respect to this.

tfest_frames.png

The technique was described in the paper:

This works as follows:

  • Repeat "ransac_nSimulations" times:

    • Randomly pick TWO correspondences from the set "in_correspondences".
    • Compute the associated rigid transformation.
    • For "ransac_maxSetSize" randomly selected correspondences, test for "consensus" with the current group:
      • If if is compatible (ransac_mahalanobisDistanceThreshold), grow the "consensus set"
      • If not, do not add it.

    For more details refer to the tutorial on scan matching methods.

    Parameters
    [in]in_normalizationStdThe standard deviation (not variance) of landmarks/points/features being matched in X,Y. Used to normalize covariances returned as the SoG. (Refer to paper)

    NOTE: Parameter ransac_maxSetSize should be set to in_correspondences.size() to make sure that every correspondence is tested for each random permutation.

Returns
True upon success, false if no subset was found with the minimum number of correspondences.
Note
[New in MRPT 1.3.0] This function replaces mrpt::scanmatching::robustRigidTransformation()
See also
se3_l2, se2_l2_robust

Referenced by mrpt::tfest::TSE2RobustResult::TSE2RobustResult().

bool TFEST_IMPEXP mrpt::tfest::se3_l2 ( const mrpt::utils::TMatchingPairList in_correspondences,
mrpt::poses::CPose3DQuat out_transform,
double &  out_scale,
bool  forceScaleToUnity = false 
)

Least-squares (L2 norm) solution to finding the optimal SE(3) transform between two reference frames using the "quaternion" or Horn's method:

  • "Closed-form solution of absolute orientation using unit quaternions", BKP Horn, Journal of the Optical Society of America, 1987.

The optimal transformation q fulfills $ p_{this} = q \oplus p_{other} $, that is, the transformation of frame other with respect to this.

tfest_frames.png
Parameters
[in]in_correspondencesThe coordinates of the input points for the two coordinate systems "this" and "other"
[out]out_transformThe output transformation
[out]out_scaleThe computed scale of the optimal transformation (will be 1.0 for a perfectly rigid translation + rotation).
[in]forceScaleToUnityWhether or not force the scale employed to rotate the coordinate systems to one (rigid transformation)
Note
[New in MRPT 1.3.0] This function replaces mrpt::scanmatching::leastSquareErrorRigidTransformation6DRANSAC() and mrpt::scanmatching::HornMethod()
See also
se2_l2, se3_l2_robust
bool TFEST_IMPEXP mrpt::tfest::se3_l2 ( const std::vector< mrpt::math::TPoint3D > &  in_points_this,
const std::vector< mrpt::math::TPoint3D > &  in_points_other,
mrpt::poses::CPose3DQuat out_transform,
double &  out_scale,
bool  forceScaleToUnity = false 
)

This is an overloaded member function, provided for convenience. It differs from the above function only in what argument(s) it accepts.This version accepts corresponding points as two vectors of TPoint3D (must have identical length).

bool TFEST_IMPEXP mrpt::tfest::se3_l2_robust ( const mrpt::utils::TMatchingPairList in_correspondences,
const TSE3RobustParams in_params,
TSE3RobustResult out_results 
)

Least-squares (L2 norm) solution to finding the optimal SE(3) transform between two reference frames using RANSAC and the "quaternion" or Horn's method:

  • "Closed-form solution of absolute orientation using unit quaternions", BKP Horn, Journal of the Optical Society of America, 1987.

The optimal transformation q fulfills $ p_{this} = q \oplus p_{other} $, that is, the transformation of frame other with respect to this.

tfest_frames.png
Parameters
[in]in_correspondencesThe set of correspondences.
[in]in_paramsMethod parameters (see docs for TSE3RobustParams)
[out]out_resultsResults: transformation, scale, etc.
Returns
True if the minimum number of correspondences was found, false otherwise.
Note
Implemented by FAMD, 2008. Re-factored by JLBC, 2015.
[New in MRPT 1.3.0] This function replaces mrpt::scanmatching::leastSquareErrorRigidTransformation6DRANSAC()
See also
se2_l2, se3_l2

Referenced by mrpt::tfest::TSE3RobustResult::TSE3RobustResult().




Page generated by Doxygen 1.8.11 for MRPT 1.5.0 Git: 954a938 Thu Jun 22 02:41:33 2017 +0200 at vie jun 23 00:00:34 CEST 2017